Doc:Radiation/Contamination

From Metabolomics.JP
< Doc:Radiation
Revision as of 11:26, 11 April 2011 by Adm (Talk | contribs)

Jump to: navigation, search
もくじ 基礎知識 自然放射線 人体への影響 胎児と子供 ファイトレメディエーション 土壌汚染 移行係数 食品汚染 家畜汚染 Q&A とリンク

文責: 有田正規 (東大・理・生物化学)   質問、コメント、誤り指摘、リクエスト等は arita@bi.s.u-tokyo.ac.jpまで


Contents

土壌汚染の程度

まとめ
  • チェルノブイリ事故において土壌が「汚染」されたとする指標は
1m2あたり 37000 Bq (37kベクレル)、おおよそ 1850 ∼ 493 Bq / kg 土壌
です。3万7千ベクレルという値は、1km2あたり 1 Ci (キュリー) に同値です。
  • チェルノブイリ近辺では、上記の汚染地域には立ち入り禁止になっています (長期的に住むことは健康被害の可能性が高い)
  • 福島県の各所では、上記の汚染基準よりも高い放射線量が観測されています[1]
    • これらの汚染地域からは、(いますぐではなくても)人と家畜を他所に移す、土壌改良等によりセシウム量を減らす措置を早急に取るべき[2][3]
    • 周辺地域における農畜産業については、セシウム被害を広げないために緊急に対策が必要
参考になる総説(英文)このページの内容、表などは以下の文献からとっています
  • Fesenko et al. "An extended critical review of twenty years of countermeasures used in agriculture after the Chernobyl accident" Sci Total Environ 383(1):1-24 PMID 17573097


3月20日の報道によると、原発から北西に約40kmの福島県飯舘村で163000 Bq/kg 土壌の、Cs-137による汚染が見つかっています。この、kg土壌あたりのベクレル値に対し、国連やチェルノブイリ関係の資料では、通常1m2あたりのベクレル値が使われます。換算の目安として、同じ朝日新聞記事に、京都大原子炉実験所の今中哲二助教(原子力工学)の換算で1m2あたり3,260,000 Bq[4]、金沢大の山本政儀教授(環境放射能学)の換算(1m2×5cm, 土壌密度1.5程度と仮定)でセシウム濃度約12,000,000 Bqという算定があります[5]。山本教授の値は今中助教の値よりもずっと大きく、またセシウムがすぐに土壌 5cm に浸透することは考えにくいのですが (ファイトレメディエーションのページを参考にしてください)、1m2あたりのベクレル数を求めるのにkgあたりのベクレル数を20∼75倍する換算法は下限値および上限値の見積もりとして妥当と思われます。

飯舘村の汚染度について4月6日の時点では、水田でおよそ15000 Bq/kg が計測されています。これは長期的に居住するには適切でない、大変高い値です。

参考情報
  1. 福島県における放射性物質の測定結果
  2. 旧ソ連では事故がおきた翌月1987年5月には30km圏内にいた5万の牛, 1万3千の豚, 3300の羊, 700の馬を移住させています。同時に2万の家畜や犬猫が埋められました。しかし、移動した家畜を安定して飼うこともできず、その後7月までに移住させた家畜も含み95500の牛, 23000の豚が埋められました。(Nadtochiy P, Malinovskiy A, Mogar AO, Lazarev N, Kashparov V, Melnik A. Experience of liquidation of the Chernobyl accident consequences. Kiev: Svit; 2003)
  3. IAEA. International Atomic Energy Agency. Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the UN Chernobyl Forum Expert Group “Environment” (EGE). Vienna, IAEA; 2006
  4. これはkgあたりのベクレル数を20倍して1m2あたりにしています
  5. これはkgあたりのベクレル数を73.6倍して1m2あたりにしています

食品汚染を防ぐには

ソビエト連邦で1986-1991に定められた、食品における放射線の暫定基準値(Temporary Permissible Levels (TPL), Bq/kg)[1][2] を示します。現在の日本の基準値はこれよりも厳しくなっているので、食品すべてが検査されているのであれば、とりあえず安心でしょう。

TPL 4104-88 129-252 TPL-88 TPL-91
採択日 06.05.1986 30.05.1986 15.12.1987 22.01.1991
核種 131I β-emitters 134+137Cs 134+137Cs 90Sr
牛乳 370–3700 370–3700 370 370 37
乳製品 18,500–74,000 3700–18,500 370–1850 370–1850 37–185
肉・肉製品 3700 1850–3000 740
魚介類 37,000 3700 1850 740
37,000 1850 740
野菜・果実・根菜類 3700 740 600 37
パン・小麦・穀類 -  370 370 370  37

食品汚染への対策

チェルノブイリ事故では、汚染された牛乳を摂取した子供が甲状腺がんを患うという健康被害を出しました。その反省および対策として、以下の対策がとられています。これらは日本の土壌汚染についてもあてはまるでしょう。

半減期の短い放射性ヨウ素汚染の広がりを防ぐために
  • 牛乳の放射線検査を徹底すること
  • 放射線検査に不合格の牛乳は、チーズやバターに加工する
  • 家畜は放牧せずに屋内で汚染されていない飼料を与えること
半減期の長い放射性セシウム汚染の広がりを防ぐために
  • セシウム濃度の高い家畜を市場に流通させない
  • 農作物はできるだけ外気に触れさせずに(屋内で)栽培する
  • 汚染された家畜の糞を肥料として利用しない
  • 牧草でなくとうもろこし等を飼料に与える
  • 牛にはプルシアンブルー(セシウムの排出を促す)を与える
  • 地元で(未検査の)牛乳や農産物を消費しない
  • 農産物、牛乳はかならず放射線検査をする
  • きのこは摂取しない(きのこは重金属類を蓄積しやすい)

基準値を超えた牛乳や肉も利用できる

加工品にすることで、含まれる放射性物質を減らすことが可能です。とりわけ牛乳や精肉で基準値をわずかに超えるような場合は、加工品とすることで安全に消費することが可能です。牛乳はバターにする、果物は(100%でない)ジュースにする、野菜や肉は煮込んで使うことにより、放射性物質の量を軽減できます。基準値は長期間食べ続けても大丈夫な量をもとに設定されているため、基準値を下回れば健康に被害はありません。

食品加工による放射性物質の軽減比(加工後 / 加工前) [3][4]
対策 137Cs 90Sr
小麦を粉にする 0.3-0.9 0.2-0.4
小麦をふすまにする 3 3
野菜、果物等を洗う 0.8-0.9 0.8-1
野菜、果物等を煮る 0.5-0.8 0.8
野菜、果物等を漬ける 0.2-0.9 -
野菜、果物等をジュースにする 0.4-1 0.01-0.5
ビートを砂糖にする 0.01-0.08 -
ジャガイモを澱粉にする 0.12-0.17 -
きのこを洗う 0.4 -
きのこを茹でる 0.1-0.3 -
きのこを水にひたす 0.1 -
きのこを漬ける 0.1-0.2 -
牛乳をバターにする 0.2-0.3 0.1-0.5
牛乳をクリームにする(脂肪10.3%) 0.7-0.9 0.7-0.9
牛乳をコンデンスミルクにする 2.7 2.7
牛乳を粉ミルクにする 8 8
牛乳をチーズにする(レンネット) 0.5-0.6 6-8
牛乳をカゼインにする 0.03 4
肉を煮込む 0.1-0.5 -
肉を水にひたす 0.02-0.7 -
ナタネから油をとる 0.004 0.002

上の表は、文献からそのまま転記していますが、おかしく感じられる点もあります(肉を水に浸して効果があるのか等)。しかし、加工品にすることで基準値を下回るのであれば、むやみに廃棄するのではなく加工して利用する道を模索すべきでしょう。

なぜならセシウム被害はここ数ヶ月の問題ではなく、これから何十年もお付き合いしなくてはならない問題だからです。いつまでも廃棄して済まされるものではありませんし、廃棄する習慣をつけないほうが将来のためだと思います。

土壌汚染を防ぐには

表土を入れ替えるという措置は、コストが非常に高いため農地にはおこなえないという報告[5]があります。表土をどこに廃棄するかも問題になります。産業廃棄物の業者を手配して安全な廃棄場所を確保する必要性や、ウクライナにおいてさえ徹底して表土を入れ替える措置がわずか 1000 ha 程度にしか施されていないことを考えると、日本において今回汚染された土壌のほとんどは現状のまま利用するしかありません。また、ファイトレメディエーションは放射性セシウムに対して有効ではありません。この状況を考えると、

土壌からセシウムをいかに取り除くかを考えるよりも、土壌中のセシウムをいかに農畜産物に混入させないかを考えるべきでしょう。

セシウム被害を減らす手段

  • 表土の入れ替え (skim and burial ploughing)
表土5cm部分を中間部分はそのままに地下45cm に移します。単に耕すことで植物に取り込まれる放射性元素は1/2に減りますが、この入れ替え手法で1/15-1/20に減らせるとあります [6]
  • 土を中性に保つ
セシウムやストロンチウムは酸性土壌で植物に吸収されやすくなるので、石灰を撒くなどして中性にします[7] 1 haあたり2-10トンの消石灰を施すと、植物に取り込まれる放射性元素が2/3から1/3に減少します。
  • ミネラル性の肥料を施す
セシウムはカリウムの代わりとして取り込まれるため、Cs:K 比をできるだけK側に偏らせることが重要です。植物がセシウムをとりこまないための最適の肥料成分は N:P:K = 1:1.5:2 という比率です[8] チェルノブイリ近隣国で利用しているカリウム肥料の平均量は60 kg/ha K2Oで、肥料が足りない時には農作物中におけるセシウム量が増加しました。
  • 大幅な土壌改良をほどこす
チェルノブイリ周辺国でとりわけ汚染が激しい部分は、生えている植物をすべて取り除き、耕してから、石灰と施肥、再度撒種するという大幅な土壌改良もおこなわれました(特にウクライナでは800ヘクタールに及ぶ)。この手法は、肥沃な部分が浅い土壌(耕すとその層が失われてしまう)や傾斜地、川沿いには適用できませんが(侵食や土砂崩れの可能性があるため)、土地の種類によって1/2から1/15にまで植物のセシウム吸収量を抑えることができています。
  • セシウムをよく吸収する作物は植えない
セシウムの吸収率は植物によって大幅に異なります。吸収率が高いとされているアカザ科、ヒユ科[9]の作物は植えないようにします。植えるべきではない作物名はたとえば、ホウレンソウ、カラシ菜、ホウキグサ(ニワクサ)、オカヒジキ、アマランサスです。 また、きのこ類も一般に重金属を多く蓄積するので、きのこは栽培しないほうがよいでしょう。サトウダイコン(ビート)はヒユ科ですが、砂糖を取るために栽培するのであれば、精製時にセシウムが排除されるので栽培して問題ありません。
  • 菜種、菜の花を植える
ベラルーシでは、セシウムとストロンチウムの吸収量が少ない菜種 (rape seed)の耕作地を22000ヘクタールに増やしました。菜種は油が採れる上に家畜の飼料になり、広範囲におよぶ汚染地域の場合、有効な利用法になります。(菜種油にすることでセシウム量は0.004倍に減ります。)植物によるセシウムの吸収を抑えるために、ヘクタールあたり6トンの石灰と肥料を施します。


参考
  1. IAEA. International Atomic Energy Agency. The International Chernobyl Project. Assessment of radiological consequences and evaluation of protective measures. Report by an International Advisory Committee. Vienna, IAEA; 1991
  2. Balonov MI (1993) Overview of dose to the Soviet population from the Chernobyl accident and protective actions applied. In: Merwin S, Balonov M, editors. The Chernobyl papers, I, doses to the Soviet population and early health effects studies. Richland: Research Enterprises, pp.23–45
  3. Brown J, Ivanov Y, Perepelaytnikova LV, Prister B, Fesenko SV, Sanzharova NI, et al. (1995) Comparison of data from the Ukraine, Russia and Belarus on the effectiveness of agricultural countermeasures. NRPB-M597. Didcot: NRPB
  4. Bogdevitch I, Bogdevitch Yu, Rigney C, Chupov A. (2002) Edible oil production from rapeseed grown on contaminated lands. Innovations forum Westschopfugsketten in der Naturstoffverarbeitung. 10 und 11 Dezember 2001 Gardelegen; pp148-56
  5. Jacob P, Fesenko S, Firsakova SK, Likhtarev IA, Schotola C, Alexakhin RM, et al (2001) Remediation strategies for rural territories contaminated by the Chernobyl accident. J. Environ Radioact 56:51–76
  6. J. Roed, K. G. Andersson and H. Prip (1996) The skim and burial plough: A new implement for reclamation of radioactively contaminated land J Environ Radioactivity 33(2):117-128 journal PDF
  7. Alexakhin RM. (1993) Countermeasures in agricultural production as an effective means of mitigating the radiological consequences of the Chernobyl accident. Sci Total Environ 137:9–20
  8. RIARAE (1991) Russian Institute of Agricultural Radiology and Agroecology. In: Alexakhin RM, editor. Recommendations. Guide on agriculture administrating in areas subjected to contamination as a result of the accident at the Chernobyl NPP for 1991–1995. Moscow: State Commission of the USSR on food and purchases
  9. 最新の植物分類体系APG-IIでは、アカザ科はヒユ科に含まれます。ヒユ科の植物であるカラシ菜は土壌中の重金属を回収するために用いられる代表的植物です。学名で言うとAmaranthas属の植物が、多くのファイトレメディエーション研究で用いられています。

セシウムを回収する手段はあるか

以下は論文等の根拠が無い憶測になります。東大および理研の研究者と相談していて出たアイデアですが、テンサイ(サトウダイコン)を栽培するのが良いかもしれません。理由として

  • 土壌深くに根を下ろし、温帯でも育つ (北海道における栽培のノウハウもあります)
  • ヒユ科なのでセシウムを蓄積する可能性がある
  • 精製した砂糖にはセシウムは入らない

最終的にはテンサイがセシウムをどの程度吸収できるのか、また砂糖の生成段階でセシウムを効率よく回収できるのかを見積もらねばなりません。栽培法も、カリウム肥料を与えなくて大丈夫か検討が必要です。

Personal tools
Namespaces

Variants
Actions
Navigation
metabolites
Toolbox