Category:FL
Flavonoid (フラボノイド)
Flavonoid Top | Molecule Index | Author Index | Journals | Structure Search | Food | New Input |
Contents |
Class Overview
The word "flavonoid" comes from its Latin origin flavus (yellow) with oid, meaning yellow-ish. It comes from its history as yellow natural dye (quercetin and kaempferol are the most widespread flavone dyes. See flavone). Chemically speaking, it is a class of plant secondary metabolites that have two benzene rings (each called A-ring and B-ring) connected by a chain of three carbons (Figure 1).
The carbon chain, corresponding to the numbers 2,3,4 in Figure 1, is linked to a hydroxyl group in the A-ring to form the C-ring. The class of flavonoids are usually determined by the modification pattern of the C-ring (Table 1).
Flavonoid is utilized in many industrial processes from pigments to food additives. Often heard names include anthocyanin, catechin, flavan, and isoflavone.
Biosynthesis 生合成
Explanation (解説) | |
---|---|
Flavonoid is synthesized through the phenylpropanoid-acetate pathway in all higher plants. It is responsible for many biological activities including pigments, anti-oxidative or anti-allergic agents, and signaling elements in nodule formation. Some of them are quite familiar in our daily life. |
4-coumaroyl CoA + malonyl CoA | |||||||||||||
CHS | |||||||||||||
CHALCONES, AURONES | chalcone | FLAVONES | |||||||||||
CHI | /FS | ||||||||||||
IFS / | FLAVANONE naringenin |
kaempferol | FLAVONOLS | quercetin | myricetin | ||||||||
ISO-FLAVONES | F3H | / FLS | / FLS | / FLS | |||||||||
DIHYDRO FLAVONOLS | dihydro-kaempferol | F3'H |
dihydro-quercetin | F3'5'H |
dihydro-myricetin | ||||||||
DFR | DFR | DFR | |||||||||||
LEUCOANTHO-CYANIDINS (flavan diols) |
leuco-pelargonidin | LAR |
leuco-cyanidin | LAR |
leuco-delphinidin | LAR |
|||||||
ANS/LDOX | PROANTHO- CYANIDINS | ANS/LDOX | PROANTHO- CYANIDINS | ANS/LDOX | PROANTHO- CYANIDINS | ||||||||
ANTHO-CYANIDINS | pelargonidin | ANR |
cyanidin | ANR |
delphinidin | ANR |
|||||||
UF3GT | epi-afzelechin | UF3GT | epi-catechin | UF3GT | epigallo-catechin | ||||||||
ANTHO-CYANINS | pelargonidin 3-glucoside | cyanidin 3-glucoside | delphinidin 3-glucoside | FLAVAN 3-OLS | |||||||||
|
|
|
Six Structural Genes (6つの構造遺伝子) | |||
---|---|---|---|
Abbrev. | Name | Origin | Information |
CHS | chalcone synthase | Bacterial polyketide synthases, particularly those in fatty acid synthesis (Verwoert et al. 1992) | early response against light [1] [2] |
CHI | chalcone-flavanone isomerase | Unclear. Eubacterium ramulus has the CHI activity. [3] | early response against light |
F3H | flavanone 3-hydroxylase | 2-oxoglutarate-dependent dioxygenase family [4] | early response in Arabidopsis but late in Antirrhinum [5] |
FLS | flavonol synthase | 2-oxoglutarate-dependent dioxygenase family [6] | early response against light |
DFR | dihydroflavonol 4-reductase | NADPH-dependent reductase associated with steroid metabolism [7] | later response |
ANS/LDOX | anthocyanidin synthase | 2-oxoglutarate-dependent dioxygenase family | later response |
Auxiliary Genes (その他の遺伝子) | |||
F3'H | flavonoid 3'-hydroxylase | cytochrome P450 hydroxylase family [8] | |
F3'5'H | flavonoid 3',5'-hydroxylase | cytochrome P450 hydroxylase family [9] | Not reported in mosses or liverworts. |
UF3GT | UDP flavonoid glucosyltransferase | ||
GST | glutathione-S-transferase |
- ↑ Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM: Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 1992 4:1229-1236
- ↑ Pelletier MK, Murrell JR, Shirley BW: Characterization of flavonol synthase and leucoanthocyanidins dioxygenase genes in Arabidopsis. Plant Physiol 1997 113:1437-1445
- ↑ Herles C, Braune A, Braut M: First bacterial chalcone isomerase isolated from Eubacterium ramulus. Arch Microbiol 2004 181:428-434.
- ↑ Winkel-Shirley B: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 2001 126:485-492
- ↑ Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E: Control of anthocyanin biosyntehsis in flowers Antirrhinum majus. Plant J 1991 1:37-49
- ↑ Holton TA, Cornish EC: Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1993 7:1071-1083
- ↑ Baker ME, Blasco RE: Expansion of the mammalian 3bhydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose 4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus. FEBS Lett 1992 301: 89–93
- ↑ Brugliera F, Barri-Rewell G, Holton TA, Mason JG: Isolation and characterization of a flavonoid 3-hydroxylase. cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 1999 19: 441–451
- ↑ Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu CY, Farcy E, Stevenson TW, Cornish EC: Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 1993 366:276–279
Bioactivity
all flavonoids
photoprotectant, anti-oxidant |
全フラボノイド
抗紫外線、抗酸化作用 |
Tannins (proanthocyanidins)
anti-bacteria, anti-fungi |
タンニン (プロアントシアニジニン)
抗菌、抗カビ作用 |
- ↑ 1.0 1.1 Ryan KG, Swinny EE, Markham KR, Winefield C: Flavonoid gene expression and UV photoprotection in transgenic and mutant Penunia leaves. Phytochem 2002 59:23-32
Links to familiar names 耳にする名前
- isoflavonoid in beans (豆のイソフラボン)
- anthocyanin in berries (ベリーのアントシアニン)
- catechin in tea (お茶のカテキン)
- rutin in buckwheat (ソバのルチン)
- hesperidin in orange (ミカンのヘスペリジン)
- naringenin chalcone in tomato (トマトのナリンゲニンカルコン)
Database statistics/ranking データベース統計
This database collects original references that report identification of flavonoid in various plant species. The database consists of three major namespaces: (flavonoid) compounds, plant species, and references. Currently, 6961 flavonoid structures, 3961 plant species, and 5215 references describing total 19861 metabolite-species relationships are registered.
Flavonoid content in food 食品中の量
Category | Flavonol | Flavone | Flavan | Flavanone |
---|---|---|---|---|
Names | quercetin, kampferol, myricetin, isorhamnetin | apigenin, luteolin | catechin, epicatechin | |
broccoli ブロッコリ | Δ | |||
celery セロリ | ΔΔ | |||
fava そら豆 | ΔΔ | |||
hot pepper とうがらし | ΔΔ | |||
onion たまねぎ | ΔΔ (Δ) | |||
parsley パセリ | ΔΔΔ | |||
peppermint ペパーミント | ΔΔ | |||
spinach ほうれん草 | Δ | |||
thyme タイム | ΔΔΔ | |||
watercress クレソン | Δ | |||
dill, fennel ディル, フェンネル | ΔΔΔ |
Δ 5 to <10 mg/100 g; ΔΔ 10 to <50 mg/100 g; ΔΔΔ 50< mg/100 g
The following vegetables and herbs have flavonoid contents less than 5 mg/100 g: beets, kidney beans, snap beans, cabbage, carrot, cauliflower, cucumber, endive, gourd, leek, lettuce, green peas, sweet pepper, potato, radish, tomato, oregano, perrilla, rosemary
Design of Flavonoid ID numbers ID番号の設計
12-DIGIT
F | L | x | x | y | y | z | z | w | c | c | c |
- x ... backbone structure (母核構造)
FL1 aurone and chalcone; FL2 flavanone; FL3 flavone; FL4 Dihydroflavonol; FL5 Flavonol; FL6 Flavan; FL7 Anthocyanin; FLI Isoflavonoid; FLN Neoflavonoid
- y ... hydroxylation pattern in A and B ring (水酸基パターン)
Click above categories to see details. General description is here.
- z ... glycosylation pattern (糖修飾パターン)
Click above categories to see details. General description is here.
- w ... halogenation etc. (ハロゲン等)
Currently unused.
- c ... serial number (通し番号)
For Users of Flavonoid Viewer
The flavonoid IDs used in this site is the same as those in Flavonoid Viewer in metabolome.jp except for the following FL7 category.
Anthocyanin glycosylated with other than glucose and galactose | ||
---|---|---|
Flavonoid Viewer FL7A..GS |
→ | This site FL7A..GO |
Subcategories
This category has the following 10 subcategories, out of 10 total.