Aritalab:Lecture/Basic/Distribution/Normal

From Metabolomics.JP
Jump to: navigation, search

正規分布の確率密度関数は


\mbox{Pr}(X=k) = \frac{1}{\sqrt{2\pi}\sigma} \exp\Big( -\frac{(x-\mu)^2}{2\sigma^2} \Big)

で与えられる。確率母関数は


\begin{align}\textstyle
G(z) &= \int \frac{1}{\sqrt{2\pi}\sigma} \exp\Big( -\frac{(x-\mu)^2}{2\sigma^2} \Big) z^x dx \\
&= \int \frac{1}{\sqrt{2\pi}\sigma} \exp\Big( -\frac{(x-\mu)^2}{2\sigma^2} \Big) \exp(x\log z) dx 
\end{align}

ここでu = (x-\mu)/\sigmaとおくとdx = \sigma du


\begin{align}\textstyle
G(z) &= \int \frac{1}{\sqrt{2\pi}} \exp\Big( (\log z)(\mu + \sigma u) \Big) \exp\Big( -\frac{u^2}{2}\Big) \sigma du\\
&= e^{\mu\log z} \int \frac{1}{\sqrt{2\pi}} \exp\Big( (\log z)\sigma u - \frac{u^2}{2} \Big) du\\ 
&= e^{\mu\log z + \frac{\sigma^2 (\log z)^2}{2} } \int \frac{1}{\sqrt{2\pi}} \exp\Big( - \frac{(u - \sigma \log z)^2}{2} \Big) du\\
&= z^{\mu} \exp{(\sigma^2 (\log z)^2 / 2 )}
\end{align}

これより


\begin{align}
G'(1) &= \mu \\
G''(1) &= 
\end{align}

Personal tools
Namespaces

Variants
Actions
Navigation
metabolites
Toolbox