Category:TP3

From Metabolomics.JP
(Difference between revisions)
Jump to: navigation, search
(Biosynthesis)
m (Biosynthesis)
Line 144: Line 144:
 
| H18&alpha;-lupyl cation <small>(C-C-C-C)</small><br/>[[Image:Lupyl cation.png]]
 
| H18&alpha;-lupyl cation <small>(C-C-C-C)</small><br/>[[Image:Lupyl cation.png]]
 
|-
 
|-
|align="center"| 1,2-[[Image:Arrow35d.png]] shift
+
|align="center"| 1,2-[[Image:Arrow00d35.png]] shift
|align="center"| 1,2-[[Image:Arrow35d.png]] shift
+
|align="center"| 1,2-[[Image:Arrow00d35.png]] shift
 
|
 
|
|align="center"| 1,2-[[Image:Arrow35d.png]] shift
+
|align="center"| 1,2-[[Image:Arrow00d35.png]] shift
|align="center"| 1,2-[[Image:Arrow35d.png]] shift
+
|align="center"| 1,2-[[Image:Arrow00d35.png]] shift
 
|-
 
|-
 
|  
 
|  

Revision as of 12:16, 9 August 2010

Contents

Triterpene (C30) Classes

Ring configuration

The basic structure is 4 carbon rings, cyclopenta[a]phenanthrene, gonane, or sterane. The rings B/C are always trans in all natural steroids. If the rings C/D are trans, it is called gonane. If its stereochemistry is unspecified, it is called sterane. Most steroids take gonane form, but in cardenolides and bufanolides, the rings C/D are cis.

Cyclopenta-a-phenanthrene.png Gonane.png
Cyclopenta[a]phenanthrene Gonane

The majority of steroids have methyl groups sticking out from the bridgehead positions C-10 and C-13. When these methyl groups (or hydrogens) stand above the plane, they are called β-configuration. Those below the plane are called α-configuration. If the configuration at any site is unknown, it is indicated as ξ (Greek Xi). By default, hydrogen atoms or substituents at the positions C-8, 9, 10, 13, and 14 are assumed to be 8β, 9α, 10β, 13β, and 14α configurations. C-5 is a special position, because there are as many 5α steroids as 5β are.

Cholestane.png 5alpha-steroid.png 5beta-steroid.png
cholestane backbone 5α-configuration 5β-configuration


Biosynthesis

The starting point is squalene, which is formed by joining two FPPs tail-to-tail. Bacterial cyclases use squalene directly, but those of the other species use 2,3-oxidosqualene for cyclization.

  • In bacteria, squalene is cyclized via the 17α-deoxydammarenyl cation to hopene and other triterpenes[1].
  • In eukaryotes, 2,3-oxidosqualene is cyclized via the protosteryl cation to lanosterol (animals and fungi) or cycloartenol (plants) by a series of 1,2-hydride and methyl shifts (Wagner-Meerwein shifts).[2]
  • In plants, various triterpenes arise from the dammarenyl cation.

ANIMALS, FUNGI, and YEAST PLANTS
2,3-oxidosqualene
2,3-oxidosqualene.png
lanosterol Arrow00dl35.png synthase[3] lupeol Arrow00dr35.png synthase
17β-protosteryl cation (C-B-C)[4]


Protosteryl cation.png

1,2-shift
Arrow00r35.png
lanosteryl cation (C-C-C)
Lanosteryl cation.png
17β-dammarenyl cation (C-C-C)[5]


Dammarenyl cation.png

D-ring
expansion
Arrow00d.png      Arrow00dr35.pngprotostane
Arrow00d.png 1,2-shift
D-ring
expansion
Arrow00d.png
unknown cation
Lanosteryl cation.png
lanostane
cycloartane
cucurbitane
all steroids



baccharane



Arrow00l35.png
baccarenyl cation (C-C-C-C)
Baccarenyl cation.png
E-ring
cyclization
(from 18α)
Arrow00d.png        E-ring
cyclization
(from 17β)
Arrow00dr.png
E-ring cyclization
(from 18α)
Arrow00dl.png
E-ring
 
Arrow00d.png cyclization
(from 18β)
hancolupyl cat. (C-B-C-C)
Hancolupyl cation.png
arborinyl cation (C-B-C-C)
Arborinyl cation.png
H18β-lupyl cation (C-C-C-B)
Lupyl cation2.png
H18α-lupyl cation (C-C-C-C)
Lupyl cation.png
1,2-Arrow00d35.png shift 1,2-Arrow00d35.png shift 1,2-Arrow00d35.png shift 1,2-Arrow00d35.png shift
  1. Bacterial squalene cyclases can accept oxidosqualene as their substrates, but oxidosqualene usually does not exist in bacteria
  2. A trace amount of phytosterols comes from lanosterol. Ohyama K, Suzuki M, Kikuchi J, Saito K, Muranaka T (2009) Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis Proc Natl Acad Sci USA 106(3):725-730
  3. The most accessible enzyme among oxidosqualene cyclases.
    Ref. Corey EJ, Russey WE, Ortiz-de-Montellano PR (1966) 2,3-Oxidosqualene, an intermediate in the biological synthesis of sterols from squalene J Am Chem Soc 88:4750-1
  4. The rings of protosteryl cation are chair-boat-chair configuration. The C-17 chain is β-configuration, not α.
    Ref. Corey EJ, Virgil SC (1991) An experimental demonstration of the stereochemistry of enzymic cyclization of 2,3-oxidosqualene to the protosterol system, forerunner of lanosterol and cholesterol. J Am Chem Soc 113:4025-6
  5. The rings of dammarenyl cation are all-chair configuration. The C-17 chain is β-configuration.
    Ref. Xiong Q, Rocco F, Wilson WK, Xu R, Ceruti M, Matsuda SPT (2005) Structure and reactivity of the dammarenyl cation: configuration transmission in triterpene synthesis. J Org. Chem. 70:5362-75


Useful Reviews:

  • Xu R, Fazio GC, Matsuda SPT (2004) On the origins of triterpenoid skeletal diversity. Phytochemstry 65:261-291 PMID 14751299
BACTERIA
squalene
Squalene.png Arrow00r.png
squalene-hopene Arrow00d35.png cyclase[1]
17α-deoxydammarenyl cation[2]


Deoxydammarenyl cation.png

D-ring Arrow00d35.png expansion[3]
Hopyl cation.png
Arrow00d35.png
hopene
Hopene.png
Examples.

Design of Tri-terpene ID numbers ID番号の設計

12-DIGIT

T P 3 x y y r h g n c c
x ... species information
Symbol at x Kingdom Phyla Examples
I Animalia Arthropoda (Insects, crabs) ecdysteroids
V Chordate (Vertebrates) sex steroids, corticosteroids, anabolic steroids
O Others marine steroids
P Plantae Phytosterols lanosterols, cholesterols, brassinolides
S Saponins saponins
F Fungi ergosterols ergosterols
B Bacteria bacterial sterols hopanoids
y ... backbone structure (母核構造) 
Symbol at y Carbons Steroids Backbone Structure
GN C17 gonane Gonane.png
ES C18 estrane Estrane.png
AD C19 androstane Androstane.png
PG C21 pregnane Pregnane.png
CA C24 cholane Cholane.png
CL C27 cholestane Cholestane.png
CM C28 campestane Campestane.png
EG C28 ergostane Ergostane.png
SG C29 (4 rings) stigmastane Stigmastane.png
PR C29 (4 rings) poriferastane Poriferastane.png
Symbol at y Carbons Triterpenoids Backbone Structure
PS C30 protostane Protostane.png
EU C30 euphane Euphane.png
LN C30 lanostane Lanostane.png
CY C30 cycloartane Cycloartane.png
FS C29 fusidane Fusidane.png
HP C30 (5 rings) hopane Hopane.png
FN C30 (5 rings) fernane Fernane.png
CC C30 cucurbitane Cucurbitane.png
DM C30 dammarane Dammarane.png
BC C30 baccharane Baccharane.png
HL C30 holostane Holostane.png
PF C29 (5 rings) pfaffane Pfaffane.png
LP C30 (5 rings) lupane Lupane.png
OL C30 (5 rings) oleanane Oleanane.png
FD C30 (5 rings) friedelane Friedelane.png
TR C30 (5 rings) taraxastane Taraxastane.png
UR C30 (5 rings) ursane Ursane.png
SR C30 (5 rings) serratane Serratane.png


r ... number of major rings (環構造数) 

Click above categories to see details.

h ... hydroxylation pattern (水酸基数) 

Click above categories to see details.

g ... glycosylation pattern(糖修飾パターン) 

Click above categories to see details.

n ... number of sugars (修飾糖数) 

Click above categories to see details.

c ... serial number (通し番号)

Cite error: <ref> tags exist, but no <references/> tag was found

This category currently contains no pages or media.

Personal tools
Namespaces

Variants
Actions
Navigation
metabolites
Toolbox