Aritalab:Lecture/Algorithm/CooksTheorem

From Metabolomics.JP
Jump to: navigation, search

クックの定理

クックは1971年に論理式の充足可能性問題がNP完全であることを証明しました。

参考文献 
Garey MR, Johnson DS "Computers and Intractability" WH Freeman & Co. 1979

論理式の充足可能性問題

ブール変数の集合 U = { u1, u2 ... um } に対する真偽の割り当て t: U → {T, F} を考えます。変数が m 個あれば、割り当てパターンは 2m 通りあります。 U に含まれる複数個のブール変数 u またはその否定 ¬u を ∨ (or) でつないだものを節といいます。 節が真になるとき、その節は充足されたといいます。 例えば{ u1, ¬u2, u3 } という節は、 u1 = F かつ u2 = T かつ u3 = F でない限り充足されます。(充足する真偽の割り当ては7パターンあります。)

節の集合 C が充足可能であるとは、C に含まれる節を全て充足するようなブール変数の集合 U に対する真偽の割り当て t が存在することをいいます。この定義を用いて、充足可能性問題 (SAT: Satisfiability Problem) は以下のように書けます。

「変数の集合 U 上の節集合 C に対して、それを充足する真偽の割り当てが存在するか?」

例えばU = { u1, u2 } において

C = { {¬u1, u2}, {u1, ¬u2} } は充足可能 ( u1 = u2 = T のとき)
C = { {u1, u2}, {u1, ¬u2}, {¬u1} } は充足不可能

となります。充足可能性を判定するには、2m 通りに近い真偽パターンを試す以外に方法が無いと考えられています。

Cookの定理

充足可能性問題 (SAT) はNP完全である

SATがNPに入ることは明らかです。正解となる論理変数の割り当てを知っていれば、節が充足されることを検証するのは簡単です(線形時間しか要しません)。 SATがNP完全であることを示すには、NPに属するあらゆる問題が、SATの一例とみなせることを示さなくてはなりません。しかし、あらゆるNP問題を逐一SATに変換していては埒が明きません。 そのかわり、非決定性チューリング機械 (NDTM) の全動作パターンを、SATで特定できることを示します。

入力文字列を x 、計算が終わるまでに必要な多項式時間ステップを p(n) (n = |X|) とします (受理状態も含めます)。 この時間内で、NDTM M = (Γ, Q, δ, x) はテープ位置 -p(n) から p(n) + 1 の内側しか処理できないことを利用します。M の状態数やテープ記号数も有限ですから、これらに関する処理を有限個の変数で記述することが可能です。

+ M の記述に用いる変数
 変数 意味 パラメータ 大雑把な個数
Q[ti, qk] 時間 i において M が状態 qkにある時に限り True 0 ≤ i ≤ p(n)
0 ≤ k ≤ r
p(n) * r
H[ti, j] 時間 i において M のヘッドが
テープ位置 j にある時に限り True
0 ≤ i ≤ p(n)
-p(n) ≤ j ≤ p(n) + 1
2 p(n)2
S[ti, j, sk] 時間 i においてテープ位置 j に
記号 sk が書かれている時に限り True
0 ≤ i ≤ p(n)
-p(n) ≤ j ≤ p(n) + 1
0 ≤ k ≤ v
2 p(n)2 * v
r ... 初期状態 q0、受理状態 qY, qN も含めた全状態数 |Q|
v ... 空白記号や入力記号も含めた、テープ記号数 | Γ |

これらの変数を用いて次表に示す節を作成し、NDTM M の動きを規定します。

グループ 意味 節の構成 変数の範囲 節の個数(大雑把に)
状態に関する制約 時刻 i において M はいずれかの状態にある { Q [ ti, q0 ], Q [ ti, qY ], Q [ ti, qN ], Q [ ti, q3 ], ... , Q [ ti, qr ] } 0 ≤ i ≤ p(n) p(n)
時刻 i において M は二つの状態を同時に取らない { ¬Q [ ti, qj ], ¬Q [ ti, qj' ] } 0 ≤ i ≤ p(n),
0 ≤ j < j' ≤ r
p(n) * r2/2
ヘッド位置に関する制約 時刻 i においてヘッドはいずれかのテープ位置にある { H [ ti, -p(n) ], H [ ti, -p(n)+1 ], ..., H [ ti, p(n)+1</sub> ] } 0 ≤ i ≤ p(n) p(n)
時刻 i においてヘッドは二つの位置を同時に取らない { ¬H [ ti, j ], ¬H [ ti, j' ] } 0 ≤ i ≤ p(n),
-p(n) ≤ j < j' ≤ p(n)+1
p(n) * 2 p(n)2
テープに書く記号に関する制約 時刻 i においてテープ位置 j にはいずれかの記号 k がある { S [ ti, j, s0 ], S [ ti, j, s1 ], ..., S [ ti, j, sv ] } 0 ≤ i ≤ p(n),
-p(n) ≤ j ≤ p(n)+1
p(n) * 2 p(n)
時刻 i においてテープ位置 j は二種の記号を同時に取らない { ¬S [ ti, j, sk ], ¬S [ ti, j, sk' ] } 0 ≤ i ≤ p(n),
-p(n) ≤ j ≤ p(n)+1,
0 ≤k < k' ≤ v
p(n) * 2 p(n) * v
M の初期設定に関する制約 初めはテープに入力 x = k1k2...knのみ { Q [ t0, q0 ] }, { H [ t0, 1 ] }, { S [ t0, 0, s0 ] },
{ S [ t0, 1, k1 ] }, { S [ t0, 2, k2 ] }, ... { S [ t0, n, kn ] },
{ S [ t0, n+1, b ] }, { S [ t0, n+2, b ] }, ... { S [ t0, p(n)+1, b ] }
p(n)
受理状態に関する制約 時刻 p(n) には M が状態 qY に到達 { Q [ tp(n), qY ] } 1
状態遷移に関する制約 時刻 i にテープ j をアクセスしなければ j の中身は i+1 に変化しない { ¬S [ ti, j, sl ], H [ ti, j ], S [ ti+1, j, sl ] } 0 ≤ i ≤ p(n),
-p(n) ≤ j ≤ p(n)+1,
0 ≤ l ≤ v
2 p(n)2 * v
時刻 i に
Personal tools
Namespaces

Variants
Actions
Navigation
metabolites
Toolbox