Aritalab:Lecture/Math/Function

From Metabolomics.JP
< Aritalab:Lecture | Math
Revision as of 21:26, 20 July 2011 by Adm (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

ガンマ関数


\Gamma(z) = \int^\infty_0 e^{-t} t^{z-1} dt

は階乗の一般化で  \Gamma(z+1) = z \Gamma(z)\, を満たす。z が正の整数の場合は \Gamma(z + 1) = z!\,

\Gamma(1) = 1\,
\Gamma(1/2) = \sqrt{\pi}\,
\Gamma(3/2) = \sqrt{\pi}/2\,
\Gamma(z+1/2) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}
Stirling の近似
\Gamma(z+1) = z! \sim \sqrt{2\pi z} \Big(\frac{z}{e}\Big)^z

ベータ関数


\Beta(x,y) = \int^1_0 t^{x-1} (1-t)^{y-1} dt

\Beta(x,y) = \Beta(y,x)\,
\Beta(x,y) = \frac{x+y}{y} \Beta(x,y+1)\,
\Beta(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)}
\textstyle \Beta(\frac{1}{2},\frac{1}{2}) = \pi\,
Personal tools
Namespaces

Variants
Actions
Navigation
metabolites
Toolbox