Aritalab:Lecture/JSBi/Test/Math
Contents |
確率
平均
期待値とは、確率変数の取る値とその確率とをかけた総和である。フェアなサイコロのように全ての目が糖確率で出る場合は、目の数の期待値は(算術)平均に等しくなる。二つの確率変数X,Yがあったとき、和の平均は平均の和に等しい。
X,Yが独立のときに限り、積についても分配できる。
(ただしX,Yは独立)
分散
分散とは確率変数がとる値のばらつきの度合いである。
X,Yが独立のときに限り、和の分散は分散の和に等しい。
(ただしX,Yは独立)
独立でない場合に生じる「ズレ」を共分散と呼ぶ。
共分散・相関
共分散は二組の対応する確率変数の間で、ばらつきが異なる度合いである。 共分散の定義は
となる。 XとYに関して対称に定義されていて、XとYのばらつきの傾向が似ていれば大きな正の値になり、似ていなければ大きな負の値になる。XとYが独立であれば0になる。 共分散をXの標準偏差とYの標準偏差で割ったものが相関係数である。
回帰
ベイズの定理
分布
正規分布
よく見る釣鐘型の分布。どんな分布でも、その中から要素をランダムに抽出して和をとったものの分布は、正規分布に近づく(中心極限定理)。期待値が0, 分散が1になるようにスケーリングしたものを標準正規分布といい、と書く。
正規分布表
標準正規分布表の見方。
|
![]() |
表におけるzの値は上から順に左→右方向にみる。正規分布全体の面積を1.0としたときの、 zから上側の面積を示している。例えば標準偏差が2.0以上の面積は0.0228、2.2以上の面積は0.0139。
ポアソン分布
稀にしか起こらない離散的な事象を数える際に用いる分布。 単位時間中に平均λ回発生する事象が、ぴったりk回発生する確率を
|
![]() |
と定義する。
二項分布
推定・仮説検定
母集団から無作為に抽出された標本集団から、もとの母集団を推し量ることを推定という。
点推定と区間推定
標本の値から、母集団の平均値や分散を予測することを点推定(数値を点として予測)と呼び、その推定がどれ位ずれているかを区間推定と呼ぶ。