Aritalab:Lecture/Math/Function

From Metabolomics.JP
< Aritalab:Lecture | Math(Difference between revisions)
Jump to: navigation, search
m (ガンマ関数)
(ベータ関数)
 
(One intermediate revision by one user not shown)
Line 14: Line 14:
 
:<math>\Gamma(z+1/2) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}</math>
 
:<math>\Gamma(z+1/2) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}</math>
  
;Stirling の公式
+
;Stirling の近似
:<math>\Gamma(z+1) = z! \sim \sqrt{2\pi z} (\frac{z}{e})^z </math>
+
:<math>\Gamma(z+1) = z! \sim \sqrt{2\pi z} \Big(\frac{z}{e}\Big)^z </math>
  
 
==ベータ関数==
 
==ベータ関数==
Line 26: Line 26:
 
:<math>\Beta(x,y) = \frac{x+y}{y} \Beta(x,y+1)\,</math>
 
:<math>\Beta(x,y) = \frac{x+y}{y} \Beta(x,y+1)\,</math>
 
:<math>\Beta(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)}</math>
 
:<math>\Beta(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)}</math>
:<math>\Beta(\frac{1}{2},\frac{1}{2}) = \pi\,</math>
+
:<math>\textstyle \Beta(\frac{1}{2},\frac{1}{2}) = \pi\,</math>

Latest revision as of 21:26, 20 July 2011

[edit] ガンマ関数


\Gamma(z) = \int^\infty_0 e^{-t} t^{z-1} dt

は階乗の一般化で  \Gamma(z+1) = z \Gamma(z)\, を満たす。z が正の整数の場合は \Gamma(z + 1) = z!\,

\Gamma(1) = 1\,
\Gamma(1/2) = \sqrt{\pi}\,
\Gamma(3/2) = \sqrt{\pi}/2\,
\Gamma(z+1/2) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}
Stirling の近似
\Gamma(z+1) = z! \sim \sqrt{2\pi z} \Big(\frac{z}{e}\Big)^z

[edit] ベータ関数


\Beta(x,y) = \int^1_0 t^{x-1} (1-t)^{y-1} dt

\Beta(x,y) = \Beta(y,x)\,
\Beta(x,y) = \frac{x+y}{y} \Beta(x,y+1)\,
\Beta(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)}
\textstyle \Beta(\frac{1}{2},\frac{1}{2}) = \pi\,
Personal tools
Namespaces

Variants
Actions
Navigation
metabolites
Toolbox