Doc:Food/Flavonoid
(→{{Bilingual|利用効率|Bioavailability}}) |
|||
(4 intermediate revisions by one user not shown) | |||
Line 6: | Line 6: | ||
{{Twocolumn| | {{Twocolumn| | ||
Flavonoid contents in food may vary from many reasons: the place and time of harvest, measurement method, and the handling of biological samples. | Flavonoid contents in food may vary from many reasons: the place and time of harvest, measurement method, and the handling of biological samples. | ||
− | In this | + | In this summary page, we selected foods with over 10 mg flavonoids per standard serving. For example, fresh peppermint contains ca 20 mg flavones (apigenin and luteolin) per 100 g, but we do not eat over 50 g peppermint leaves in a normal diet. The following data are rather ''subjectively'' selected from data tables in this database. For full data, please visit the following data pages. |
| | | | ||
フラボノイドの食品含有量は多くの要素、例えば植物の産地・収穫時期、計測方法、サンプルの扱い方等に左右されます。 | フラボノイドの食品含有量は多くの要素、例えば植物の産地・収穫時期、計測方法、サンプルの扱い方等に左右されます。 | ||
− | + | このページでは1食あたり 10 mg を超えるフラボノイドを含む食品をリストしています。例えば生のペパーミント葉は 100 g あたり 20 mg のフラボン(アピゲニン、ルテオリン)を含みますが、通常の食事ではペパーミントを 50 g も採りません。こうした主観的判断によってデータから選択したリストが以下に示してあります。より詳細なデータは、以下にリストされるページにあります。 | |
}} | }} | ||
Line 16: | Line 16: | ||
* [[Doc:Food/Flavonoid/USDA-Iowa1999|{{Bilingual|イソフラボン含量の表|A table of isoflavonoid contents}}]] by USDA-Iowa State U 1999 | * [[Doc:Food/Flavonoid/USDA-Iowa1999|{{Bilingual|イソフラボン含量の表|A table of isoflavonoid contents}}]] by USDA-Iowa State U 1999 | ||
* [[Doc:Antioxidant|{{Bilingual|フラボノイドの抗酸化能|Antioxidant activity of flavonoids}}]] | * [[Doc:Antioxidant|{{Bilingual|フラボノイドの抗酸化能|Antioxidant activity of flavonoids}}]] | ||
+ | * [[Doc:Tea|{{Bilingual|お茶について|Tea information}}]] | ||
;References | ;References | ||
Line 27: | Line 28: | ||
=={{Bilingual|利用効率|Bioavailability}}== | =={{Bilingual|利用効率|Bioavailability}}== | ||
+ | ; {{Bilingual|一般|General}} | ||
+ | {{Twocolumn| | ||
+ | Most flavonoids are absorbed in the small intestine, and are soon metabolized to form β-glucuronide and sulfate conjugates (phase II conjugation in the intestinal wall)<ref>Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) "Polyphenols: food sources and bioavailability" ''Am J Clin Nutr'' 79(5):727-747</ref>. | ||
+ | The catechol units are often methylated. C-glycosides such as puerarin remain stable and not conjugated. | ||
+ | |||
+ | Not all phenolics including flavonoids are absorbed in their native forms. Esterification of phenolic acids (e.g. chlorogenic acid), for example, reduces absorption. Non-absorbed flavonoids are transported to the colon, and subjected to metabolism by microbiota. These metabolized forms show markedly different bioactivities from their aglycones<ref>Setchell KD, Brown NM, Lydeking-Olsen E (2002) "The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones" ''J Nutr'' 132(12):3577-3584</ref> | ||
+ | |||
+ | | | ||
+ | 多くのフラボノイドは小腸から吸収され、すぐにβ-グルクロン酸抱合体、硫酸抱合体を作ります (小腸壁におけるフェーズII抱合)。カテコール部分はしばしばメチル化されます。ただし、プエラリンのようなC-グリコシドは抱合体を作りません。<br/> | ||
+ | |||
+ | フラボノイドを含むフェノール化合物の全てが体内で吸収されるわけではありません<ref name="manach">Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) "Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies" ''Am J Clin Nutr'' 81(1 Suppl):230S-242S</ref>。例えば、クロロゲン酸のようなフェノール基のエステルは殆ど吸収されません。吸収されないフラボノイドは大腸まで進み、そこで微生物による分解をうけます。こうして代謝されたものは、もとのアグリコンとは全く違う活性を持ちます。 | ||
+ | }} | ||
+ | |||
+ | ; {{Bilingual|イソフラボン|Isoflavones}} | ||
+ | {{Twocolumn| | ||
+ | Isoflavones are efficiently absorbed from the colon and exhibit the highest bioavailability. (Usually polyphenols absorbed from the colon show very low availability.) Daidzein and genistein are known to form chlorinated products (e.g. 3- and 8-chlorodaidzein), then are conjugated with glucuronides and excreted in bile. | ||
+ | | | ||
+ | イソフラボンは大腸から効率よく吸収され、フラボノイドのなかで最も高い利用効率を示します。 | ||
+ | ダイゼインとゲニステインは、塩素と結合し (3-および8-クロロダイゼイン等) その後、グルクロン酸抱合を経て胆汁の中に排出されます。 | ||
+ | }} | ||
+ | |||
+ | ; {{Bilingual|アントシアニン|Anthocyanins}} | ||
+ | {{Twocolumn| | ||
+ | Although anthocyanins comprise ca 50% of total polyphenols, they are poorly absorbed (less than 1% of intake in urinary levels) from the stomach and small intestine. After intake, they soon appear in plasma and urine. In blood, anthocyanins can exist in a non-conjugated form. Their glucuronides and sulfo-conjugated forms also appear in early blood sample (0-6 h) and methylated forms occur later (6-24 h)<ref>Kay CD, Mazza G, Holub BJ, Wang J (2004) "Anthocyanin metabolites | ||
+ | in human urine and serum" ''Br J Nutr'' 91:933-42</ref><ref>Kay CD, Mazza G, Holub BJ (2005) "Anthocyanins exist in the circulation primarily as metabolites: a study of the metabolism and pharmacokinetics of cyanidin 3-glycosides in humans" ''J Nutr'' 135:2582-8</ref> | ||
+ | | | ||
+ | アントシアニンは食品中のポリフェノールのおよそ半分を占めますが、殆ど吸収されません。(尿中には摂食量の1%しか出てきません。)アントシアニンは胃や小腸から吸収され、食後すぐにそのままの形が血漿中で検出できます。そのままの形で血液中に入るのはアントシアニンだけです。 | ||
+ | グルクロン酸抱合体、硫酸抱合体は初期 (0-6 h) に血中に見られ、時間とともに (6-24 h) メチル化したものがみられます。 | ||
+ | }} | ||
+ | |||
+ | ; {{Bilingual|フラバン|Flavan}} | ||
+ | {{Twocolumn| | ||
+ | Proanthocyanidins, anchocyanins, and galloylated tea catechins are least well-absorbed polyphenols. | ||
+ | However, gallic acid, catechins, flavanones, and quercetin glucosides are well absorbed. | ||
+ | | | ||
+ | プロアントシアニジン、アントシアニン、茶に含まれるガロイルカテキンはほとんど吸収されません。 | ||
+ | しかし、ゴール酸、カテキン、フラバノン、クエルセチン配糖体は吸収されます。<ref name="manach"/> | ||
+ | }} | ||
+ | |||
+ | <references/> | ||
+ | ===Bioavailability Data=== | ||
{| class ="wikitable" | {| class ="wikitable" | ||
! Flavonoid || Dose || Observation | ! Flavonoid || Dose || Observation | ||
Line 40: | Line 82: | ||
| decaffeinated green tea<ref>Lee MT et al (1995) ''Cancer Epidemiol Biomarkers Prev'' 41,393-399</ref> || 88 mg EGCG, 82 mg EGC, 33 mg ECG, and 32 mg EC || plasma level 46-268 ng/ml, 82-206 ng/ml, undetected, and 40-80 ng/ml, respectively. | | decaffeinated green tea<ref>Lee MT et al (1995) ''Cancer Epidemiol Biomarkers Prev'' 41,393-399</ref> || 88 mg EGCG, 82 mg EGC, 33 mg ECG, and 32 mg EC || plasma level 46-268 ng/ml, 82-206 ng/ml, undetected, and 40-80 ng/ml, respectively. | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<references/> | <references/> |
Latest revision as of 11:16, 1 October 2010
Flavonoid Top | Molecule Index | Author Index | Journals | Structure Search | Food | New Input |
Contents[hide] |
[edit] Flavonoid in Food
Flavonoid contents in food may vary from many reasons: the place and time of harvest, measurement method, and the handling of biological samples. In this summary page, we selected foods with over 10 mg flavonoids per standard serving. For example, fresh peppermint contains ca 20 mg flavones (apigenin and luteolin) per 100 g, but we do not eat over 50 g peppermint leaves in a normal diet. The following data are rather subjectively selected from data tables in this database. For full data, please visit the following data pages.
- Resources
- A table of flavonoid contents by USDA 2003
- A table of isoflavonoid contents by USDA-Iowa State U 1999
- Antioxidant activity of flavonoids
- Tea information
- References
- Merken HM, Beecher GR (2000) "Measurement of Food Flavonoids by High-Performance Liquid
Chromatography: A Review" J Agric Food Chem 48(3) 577-599 PMID 10725120
[edit] Content Summary
- Food containing high Flavanone
Flavanones are rich in citrus, not in vegetables.
Food | Flavanone (mg/100g) |
食品名 |
---|---|---|
grapefruit, raw or juice | 14-53 | グレープフルーツ (生、ジュース) |
orange and tangerine, raw or juice | 13-33 | オレンジ、みかん (生、ジュース) |
- Food containing high flavone
Many herbs contain flavones. Parsley is rich in apigenin; celery and thyme in luteolin.
Food | Flavone (mg/100g) |
食品名 |
---|---|---|
celery hearts, raw | 19 | セロリの芯 (生) |
parsley, raw | 302 | パセリ (生) |
- Food containing high flavonol
Flavonols are prevalent in vegetables, usually in small amounts. Onions, kales, hot peppers are good sources.
Food | Flavonol (mg/100g) |
食品名 |
---|---|---|
buckwheat | 23 | そば |
cranberry, juice | 16 | クランベリー (ジュース) |
onion, raw or boiled | 5-20 | たまねぎ (生、ゆで等) |
kale, raw or canned | 18-34 | ケール (生、かんづめ) |
- Food containing high flavan
Catechins and epicatechins are contained in legumes and teas, but not in other vegetables.
Food | Flavan (mg/100g or 100ml) |
食品名 |
---|---|---|
broadbeans, raw | ~50 | そらまめ (生) |
dark chocolate bar | ~50 | ダークチョコレート |
black grapes | 18 | 黒いブドウ |
brewed black tea | > 16 | 淹れた紅茶 |
brewed oolong tea | 50 | 淹れたウーロン茶 |
brewed green tea | > 50 | 淹れた緑茶 |
- Food containing high anthocyanin
Anthocyanins are contained in berries. Vegetables supply only small amounts.
Food | Anthocyanin (mg/100g) |
食品名 |
---|---|---|
blueberries, raw | 113 | ブルーベリー (生) |
sweet cherries, raw | 116 | さくらんぼ (生) |
elderberries, raw | 749 | エルダーベリー (生) |
raspberries, raw | 49 | ラズベリー (生) |
- Vegetables and herbs with scarce flavonoids
The following vegetables and herbs have flavonoid contents less than 5 mg/100 g: beets, kidney beans, snap beans, cabbage, carrot, cauliflower, cucumber, endive, gourd, leek, lettuce, green peas, sweet pepper, potato, radish, tomato, oregano, perrilla, rosemary
[edit] Bioavailability
- General
Most flavonoids are absorbed in the small intestine, and are soon metabolized to form β-glucuronide and sulfate conjugates (phase II conjugation in the intestinal wall)[1]. The catechol units are often methylated. C-glycosides such as puerarin remain stable and not conjugated. Not all phenolics including flavonoids are absorbed in their native forms. Esterification of phenolic acids (e.g. chlorogenic acid), for example, reduces absorption. Non-absorbed flavonoids are transported to the colon, and subjected to metabolism by microbiota. These metabolized forms show markedly different bioactivities from their aglycones[2]
- Isoflavones
Isoflavones are efficiently absorbed from the colon and exhibit the highest bioavailability. (Usually polyphenols absorbed from the colon show very low availability.) Daidzein and genistein are known to form chlorinated products (e.g. 3- and 8-chlorodaidzein), then are conjugated with glucuronides and excreted in bile.
- Anthocyanins
Although anthocyanins comprise ca 50% of total polyphenols, they are poorly absorbed (less than 1% of intake in urinary levels) from the stomach and small intestine. After intake, they soon appear in plasma and urine. In blood, anthocyanins can exist in a non-conjugated form. Their glucuronides and sulfo-conjugated forms also appear in early blood sample (0-6 h) and methylated forms occur later (6-24 h)[3][4]
- Flavan
Proanthocyanidins, anchocyanins, and galloylated tea catechins are least well-absorbed polyphenols. However, gallic acid, catechins, flavanones, and quercetin glucosides are well absorbed.
- ↑ Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) "Polyphenols: food sources and bioavailability" Am J Clin Nutr 79(5):727-747
- ↑ Setchell KD, Brown NM, Lydeking-Olsen E (2002) "The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones" J Nutr 132(12):3577-3584
- ↑ Kay CD, Mazza G, Holub BJ, Wang J (2004) "Anthocyanin metabolites in human urine and serum" Br J Nutr 91:933-42
- ↑ Kay CD, Mazza G, Holub BJ (2005) "Anthocyanins exist in the circulation primarily as metabolites: a study of the metabolism and pharmacokinetics of cyanidin 3-glycosides in humans" J Nutr 135:2582-8
[edit] Bioavailability Data
Flavonoid | Dose | Observation |
---|---|---|
catechin[1] | 5.8 g | 26% was excreted within 24h. m-hydroxyphenyl propionic acid was detected in plasma after 6h |
3-O-methyl-catechin[2] | 2 g | plasma level 11-18 ug/ml within 2h; 38% was excreted as glucuronides and sulphates in urine within 120h |
quercetin[3] | 64 mg (as fried onion) | plasma level 1 uM, 2h later |
quercetin[4] | 4 g (as supplement) | undetected in urine or plasma |
decaffeinated green tea[5] | 88 mg EGCG, 82 mg EGC, 33 mg ECG, and 32 mg EC | plasma level 46-268 ng/ml, 82-206 ng/ml, undetected, and 40-80 ng/ml, respectively. |
- ↑ Das NP (1971) Biochem Pharmacol 20, 3435-3445
- ↑ Hackett AM, Griffiths LA, Wermeille M (1985) Xenobiotica 15, 907-914
- ↑ Hollman PCH et al (1995) Am J Clin Nutr 62, 1276-1282; Hollman PCH et al (1996) Free Rad Biol Med 21, 703-707
- ↑ Gugler R, Leshik M, Dengler HV (1975) Eur J Clin Pharmacol 9, 229-234
- ↑ Lee MT et al (1995) Cancer Epidemiol Biomarkers Prev 41,393-399