1-5 One variable polynomial

Division algorithm, GCD
Division algorithm for polynomial of $k[x]$.
Definition 0.1. For non-zero $f \in k[x]$, set

$$
\begin{equation*}
f=a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m} \tag{1}
\end{equation*}
$$

here, $a_{i} \in k$ and $a_{0} \neq 0(m=\operatorname{deg}(f)) . a_{0} x^{m}$ is the leading term of f and write as $\operatorname{LT}(f)=a_{0} x^{m}$.

$$
\begin{equation*}
\operatorname{deg}(f) \leq \operatorname{deg}(g) \equiv \operatorname{LT}(g) \text { can be divided by } \operatorname{LT}(f) \tag{2}
\end{equation*}
$$

Proposition 0.1. k is field, $g \in k[x]$ is non-zero polynomial. Then, any $f \in k[x]$ is described as

$$
\begin{equation*}
f=q g+r \tag{3}
\end{equation*}
$$

here, $q, r \in k[x]$ and $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$. q, r is uniquely determined. There exists the algolithm to obtain q and r.

Algorithm

Input: g, f
Output: q, r
$q:=0, r:=f$
WHILE $r \neq 0$ AND LT (g) divides LT (r) DO

$$
\begin{aligned}
q & :=q+\mathrm{LT}(r) / \mathrm{LT}(g) \\
r & :=r-(\mathrm{LT}(r) / \mathrm{LT}(g)) g
\end{aligned}
$$

Corollary. If k is field and $f \in k[x]$ is non-zero polynomial, f has at most $\operatorname{deg}(f)$ roots in k.

Proof, see textbook.
Corollary. For the field k, any ideal of $k[x]$ is represented as the form of $<f>$ by $f \in k[x]$ and f is determined uniquely up to non-zero multiplicative.

Proof, see textbook.
Principal ideal, Principal ideal domain.
Definition 0.2. The greatest common divisor of polynomial $f, g \in k[x]$ is the polynomial h which satisfies the following conditions.
(i) h divides f, g.
(ii) If p is another polynomial which divides f, g, p divides h.
For h with these properties, we write $h=\operatorname{GCD}(f, g)$.
Corollary. For $f, g \in k[x]$, followings hold
(i) $\operatorname{GCD}(f, g)$ exists and is unique up to multiplicative non-zero k.
(ii) $\operatorname{GCD}(f, g)$ is the generator of the ideal $\langle f, g\rangle$. (iii) There exists the algorithm to obtain $\operatorname{GCD}(f, g)$.

Proof, see textbook.

Euclidean algorithm

Input: f, g
Output: h
$h:=f$
$s:=g$
WHILE $s \neq 0$ DO
rem $:=$ remainder (h, s)
$h:=s$
$s:=r e m$
Definition 0.3. multi-polynomials
Corollary. multi-polynomials
Ideal membership problem, see textbook.

