1-5 One variable polynomial

Division algorithm, GCD Division algorithm for polynomial of k[x].

Definition 0.1. For non-zero $f \in k[x]$, set

$$f = a_0 x^m + a_1 x^{m-1} + \dots + a_m,$$
 (1)

here, $a_i \in k$ and $a_0 \neq 0$ $(m = \deg(f))$. $a_0 x^m$ is the leading term of f and write as $LT(f) = a_0 x^m$.

$$\deg(f) \le \deg(g) \equiv \operatorname{LT}(g)$$
 can be divided by $\operatorname{LT}(f)$. (2)

Proposition 0.1. k is field, $g \in k[x]$ is non-zero polynomial. Then, any $f \in k[x]$ is described as

$$f = qg + r, \tag{3}$$

here, $q, r \in k[x]$ and r = 0 or $\deg(r) < \deg(g)$. q, ris uniquely determined. There exists the algolithm to obtain q and r.

Algorithm

Input: g, fOutput: q, r q := 0, r := fWHILE $r \neq 0$ AND LT(g) divides LT(r) DO q := q + LT(r)/LT(g)r := r - (LT(r)/LT(g))g **Corollary.** If k is field and $f \in k[x]$ is non-zero polynomial, f has at most $\deg(f)$ roots in k.

Proof, see textbook.

Corollary. For the field k, any ideal of k[x] is represented as the form of $\langle f \rangle$ by $f \in k[x]$ and f is determined uniquely up to non-zero multiplicative.

Proof, see textbook.

Principal ideal, Principal ideal domain.

Definition 0.2. The greatest common divisor of polynomial $f, g \in k[x]$ is the polynomial h which satisfies the following conditions.

(i) h divides f, g.

(ii) If p is another polynomial which divides f, g, p divides h.

For h with these properties, we write h = GCD(f, g).

Corollary. For $f, g \in k[x]$, followings hold (i) GCD(f,g) exists and is unique up to multiplicative non-zero k.

(ii) GCD(f,g) is the generator of the ideal $\langle f,g \rangle$. (iii) There exists the algorithm to obtain GCD(f,g).

Proof, see textbook.

Euclidean algorithm

Input: f, gOutput: h h := f s := gWHILE $s \neq 0$ DO rem := remainder(h, s) h := ss := rem

Definition 0.3. multi-polynomials

Corollary. multi-polynomials

Ideal membership problem, see textbook.